
System Dynamics Health Applications
1970s to the Present

• Disease epidemiology
– Cardiovascular, diabetes, obesity, HIV/AIDS, 

cervical cancer, chlamydia, dengue fever, 
drug-resistant infections

• Substance abuse epidemiology 
– Heroin, cocaine, tobacco

• Health care patient flows 
– Acute care, extended care 

• Health care capacity and delivery
– Managed care, dental care, mental health 

care, disaster preparedness, community 
health programs

• Health system economics
– Interactions of providers, payers, patients, 

and investors  

Homer J, Hirsch G. System dynamics modeling for public health: Background and opportunities. 
American Journal of Public Health 2006;96(3):452-458.
Milstein B, Homer J. Background on system dynamics simulation modeling, with a summary of major public health 
studies. Atlanta, GA: Syndemics Prevention Network, Centers for Disease Control and Prevention; May 5, 2006. 
<http://www.hpsig.com/images/f/f5/SD_background_for_public_health_%284.11.05%29.pdf>

http://www.ajph.org/content/vol96/issue3/cover.shtml


Today’s Examples 

• Growth of diabetes  

• Growth of obesity

• Hospital surge capacity

• Cocaine prevalence dynamics



Model Uses and Audiences

• Set Better Goals (Planners & Evaluators)
– Identify what is likely and what is possible
– Estimate intervention impact time profiles
– Evaluate resource needs for meeting goals 

• Support Better Action (Policymakers)
– Explore ways of combining policies for better results
– Evaluate cost-effectiveness over extended time periods
– Increase policymakers’ motivation to act differently

• Develop Better Theory and Estimates (Researchers)
– Integrate and reconcile diverse data sources
– Identify causal mechanisms driving system behavior
– Improve estimates of hard-to-measure or “hidden” variables



Practical Options in Causal Modeling
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Growth of Diabetes
(with CDC, 2003 to present)

• Diabetes programs face tough 
challenges and questions

– With rapid growth in prevalence, is 
improved control good enough? 

– Studies show primary prevention is 
possible, but how much impact in 
practice and at what cost?

– How best to balance interventions?

• Model developed with program 
planners, diabetes researchers, and 
epidemiologists

• Model-based “learning lab”
workshops for planners—federal, 
state, and local

Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA. Understanding diabetes population dynamics 
through simulation modeling and experimentation. American Journal of Public Health 2006;96(3):488-494.
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Diabetes Model Overview
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Healthy People 2010 Diabetes Goals

-11%7.88.8 
per 1,000

Reduce Diabetes–related Deaths 
Among Diagnosed 

(5-6)

-38%2540 
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Reduce Prevalence of 
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per 1,000
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(5-2)
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(5-4) +18%80%68%

Percent 
Change
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TargetBaseline

U.S. Department of Health and Human Services. Healthy People 2010. Washington DC: Office of Disease Prevention 
and Health Promotion, DHHS; 2000. http://www.healthypeople.gov/Document/HTML/Volume1/05Diabetes.htm



A History of Missed Goals

Simulations have helped diabetes planners set more realistic goals.Simulations have helped diabetes planners set more realistic goals.
Milstein B, Jones A, Homer J, Murphy D, Essien J, Seville D. Charting plausible futures for diabetes prevalence: 
A role for system dynamics simulation modeling. Preventing Chronic Disease July 2007. 
<http://www.cdc.gov/pcd/issues/2007/jul/06_0070>
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Policy Testing…and Reason for Hope

With a combination of improved control and aggressive primary 
prevention, growth in the burden of diabetes could be limited for the 

next 10 years and for decades beyond.

With a combination of improved control and aggressive primary 
prevention, growth in the burden of diabetes could be limited for the 

next 10 years and for decades beyond.
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Growth of Obesity
(with CDC, 2005 to present)

• Explore likely consequences of 
interventions
– How much impact in reducing adult 

obesity?  Over what time frame?
– What if we target by age? By sex? 

By weight category?  

• Model interventions only in terms of 
how they affect a person’s caloric 
balance (intake less expenditure) 
– Not addressing specific programs
– Not addressing efficacy and cost
– Not addressing interpersonal, 

community, or economic dynamics

Data source: National Center for Health Statistics, CDC:  National Health Examination Survey (NHES) 1960-1970, 
National Health and Nutrition Examination Survey (NHANES) 1971-2002.   

Homer J, Milstein B, Dietz W, et al. Obesity population dynamics: exploring historical growth and plausible futures in 
the U.S. Proc. 24th Int’l System Dynamics Conference; Nijmegen, The Netherlands; July 2006.
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Population Weight Dynamics
Changes in BMI Category over the Lifecourse

Dynamic Population Weight Framework
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Population Weight Dynamics
Two Classes of Interventions

Dynamic Population Weight Framework
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Results of Simulated Interventions
Environmental change approach

(reduce caloric balances to their 1970 
values by 2015 for selected age ranges)

• Youth interventions have only small 
impact on overall adult obesity 
(assuming adult habits determined by 
adult environment—not by childhood)

• Slow decline in overall adult obesity, 
even when program covers all ages 

Targeted weight loss approach
(obese lose 4 lbs per year, program 
terminated 2020)

• Such a program could accelerate 
progress and “buy time” for 
environmental change (but first, need 
to find a cost-effective program with 
lasting benefits—minimal relapse)
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Need to assure caloric balance throughout 
all ages, particularly adulthood. 

Contrast today’s narrow national focus 
on school-age youth.

Also need research on extent to which 
adult habits are determined by childhood. 
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Hospital Surge Capacity 
(with W. Va. Univ., 2003-04)

• Overcrowding due to patient surges 
in Emergency Dept. creates risk
– Deterioration of patients while 

awaiting ED admission
– Walking-out of patients who should 

be treated or isolated

• Hospital disaster plans are required 
to address surge capacity
– Flow-control methods, e.g. triage, 

transfer, early discharge
– Reserve resources—nurses, beds, 

supplies—are limited, esp. for rural 
hospitals 

– How best to deploy limited 
resources?

Hoard M, Homer J, Manley W, et al.  Systems modeling in support of evidence-based disaster planning for rural areas. 
Intl J of Hygiene and Envir Health 2005; 208:117-125.

Manley W, Homer J, et al. A dynamic model to support surge capacity planning in a rural hospital. 23rd Int’l SD 
Conference, Boston, MA; July 2005.  <http://cgi.albany.edu/~sdsweb/sds2005.cgi?P333>

St. Joseph’s Hospital, Buckhannon, W.Va.

http://images.google.com/imgres?imgurl=http://www.lindapages.com/nurses/hosp-buck.jpg&imgrefurl=http://www.lindapages.com/nurses/nurses-schools.htm&h=405&w=665&sz=108&hl=en&start=2&tbnid=jZTcg_TWiAguyM:&tbnh=84&tbnw=138&prev=/images%3Fq%3Dhospital%2BBuckhannon%2BWest%2BVirginia%26gbv%3D2%26svnum%3D10%26hl%3Den%26sa%3DG
http://images.google.com/imgres?imgurl=http://www.pulitzer.org/year/2005/public-service/works/waitroom.jpg&imgrefurl=http://www.pulitzer.org/year/2005/public-service/works/latimes6.html&h=175&w=250&sz=46&hl=en&start=9&um=1&tbnid=Yv0-Sblz5JoCXM:&tbnh=78&tbnw=111&prev=/images%3Fq%3Dhospital%2Bwaiting%2Broom%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DN
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Cumulative ED Arrivals by Acuity: 
SARS Scenario
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Hospital Model Findings

• Recommendations affected by 
particulars of the hospital and the type 
of surge
– St. Joseph’s → need nurses, not 

beds
– SARS → need ward nurses the most            

(the surge creates significant need for 
inpatient stays, not just ED care)

• But model is broadly applicable
– Could develop optimal strategies—

best practices—customized to type of 
hospital and type of surge

– Allows for systematic “all hazards”
planning
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Cocaine Prevalence Dynamics
(with UCLA and National Inst. of Justice 1988-1991)

• Planners want better estimates 
and projections
– Self-report surveys under-

report—to an extent that may 
change over time 

– Need to synthesize multiple 
indicators—”triangulate”

• Theory evolved with new data
– Initial focus on economics, but 

needed social theory, and 
modeling of crack cocaine

– Can project underreporting
by knowing how it varies by 
type of user and social climate

Homer J. A system dynamics model for cocaine prevalence estimation and trend projection. Journal of Drug Issues
1993; 23(2):251-279. 
Hser YI, Anglin MD, Wickens TD, Brecht ML, Homer JB. Techniques for the estimation of illicit drug use prevalence. 
Research report NCJ 133786, National Institute of Justice, May 1992. 
Homer J. Why we iterate: Scientific modeling in theory and practice. System Dynamics Review 1996; 12(1):1-19.
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Reported Cocaine “Ever-Used” Fraction
National Household Survey on Drug Abuse, 1976-1995

[Sterman book Fig 7-14, p. 256]

Homer J. A system dynamics model for cocaine prevalence estimation and trend projection. Journal of Drug Issues
1993; 23(2):251-279. 
Homer JB. Structure, data and compelling conclusions: Notes from the field (Jay Wright Forrester Prize Lecture.) 
System Dynamics Review 1997; 13(4):293-309.
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Inferred Underreporting of Cocaine 
“Ever-Used” Fraction

By 1995, only about 40% of actual lifetime use was accurately 
reported, down from about 70% in 1980. 

By 1995, only about 40% of actual lifetime use was accurately 
reported, down from about 70% in 1980. 



System Dynamics: 
Looking Further for the Key

The world is complex, and many 
important things are not well-measured.  
(The key is not always under the light.)
SD allows for broader causal structures 
and types of data.
Such models often lead to novel 
conclusions—and firm ones despite the 
uncertainties.
This is why SD is a powerful approach 
to support planning and policymaking.  
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SD allows for broader causal structures 
and types of data.
Such models often lead to novel 
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This is why SD is a powerful approach 
to support planning and policymaking.  
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